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Background

Several reports [2, 6, 14] on the technology path towards exascale computing have presented two possible
technology paths or “swim-lanes” for an exascale machine: (i) about one million nodes, each node con-
sists of many-core processors with performance at 1 TFlops/s; (ii) about 10,000 nodes, each node has high
performance accelerators (perhaps based on graphics processing units (GPU)) with performance at about
100 TFlops. The technology road map [14, Chapter 6] also compares different memory technologies and
future nodes will likely have user managed caches (such as shared memory on GPU) and non-volatile (NV)
memory based on phase-change or flash technology. NV memory may be used to augment main memory or
act as fast disk cache for storing check-point data. All these reports have emphasized that energy usage is
the critical challenge and the biggest energy cost is in data movement. Dr William Harrod, the Director of
Research in the Office of Advanced Scientific Computing Research (ASCR), summarizes the issue as:1

It is not about the FLOPS. It is about data movement.

This document attempts to address a gap in current thinking about applied mathematics for the exascale
by proposing development of external memory (or out-of-core) algorithms for developing efficient solvers
on accelerators and address the issue of reducing data movement for computing at the exascale.

External Memory Algorithms for Reducing Data Movement

The world’s fastest Titan supercomputer at the National Center for Computational Sciences (top rank in
TOP500) uses NVIDIA Kepler GPU to achieve a peak performance over 20 PetaFlops yet is also ranked
third most energy efficient on the Green500 list. Each compute node on Titan has a 16-core AMD Interlagos
processor with 32 GBytes of memory and an NVIDIA Kepler GPU with only 6 GBytes of device memory.
Out-of-core algorithms are useful for solving large problems limited by only the total available memory and
not by the smaller amount of GPU device memory. Similar to the major challenge in exascale computing,
the hurdle to achieving high performance on a hybrid GPU and CPU configuration is the high cost of data
movement between the CPU and GPU. The NVIDIA Titan GPU has 288 GBytes/sec of memory bandwidth
on device memory but data transfer between the GPU device and CPU host is only about 6 GBytes/sec.

The analysis and implementation of out-of-core algorithms or external memory algorithms were de-
veloped in the early days of computing to solve large problems (stored on disk) on computers that had
relatively small main memories. Hong and Kung [11] used a simple red/blue pebble game to analyse out-
of-core algorithms to derive lower bounds for n × n matrix multiply and n-point Fast Fourier Transform
(FFT) in S amount of memory. This simple model was later extended to the analysis of multi-level mem-
ory hierarchies by Savage [15]. Vitter has written surveys [1, 21] of external memory algorithms including
sorting, isosurface extraction, and external memory graph algorithms. In particular, Toledo [17] has a chap-
ter on out-of-core algorithms in numerical linear algebra that includes dense matrix multiplication, sparse
Cholesky factorization, FFT, n-body computation, and dense eigensolver. Toledo has designed a recursive
schedule for out-of-core dense LU factorization with partial pivoting that may be more efficient than left-
looking block algorithm [16]. Similar ideas of recursive algorithms and block tiling have been shown to

1Presentation at the 2011 DOE Applied Mathematics Program Meeting is available at http://www.csm.ornl.gov/
workshops/applmath11/documents/talks/Harrod_Extreme_Scale.pdf



be effective on other dense matrix algorithms [10]. There are several parallel out-of-core solvers for large
dense matrix calculations. Toledo and Gustavson [18] have developed a solver for large scale QR and Singu-
lar Value Decomposition (SVD) for long slender matrices. POOCLAPACK [9] is an out-of-core extension
of the PLAPACK [19] library for performing Cholesky and QR factorization that is based on a block parti-
tioned algorithm. D’Azevedo and Dongarra [4] have developed an out-of-core extension to ScaLAPACK for
LU, Cholesky, and QR factorization. Since partial pivoting is required in LU factorization, the ScaLAPACK
algorithms schedule computations in block column panels. In all cases, parallel out-of-core algorithms for
dense matrix computations have been shown to achieve high performance.

Relying on automatic data transfer by paging in the virtual memory system may not lead to high
performance. The very long latency of transferring data between disk and CPU core memory made this
research necessary to minimize the amount of data transfer. Most of the analysis assumed just two levels
of memory, which is a small fast in-core memory and much slower disks with larger capacity. The long
computation time in solving large problems also motivated the development of techniques for resilience in
restarting time consuming calculations. As the size of computer memories increased and large problems are
ported to run on distributed memory machines, the interest in out-of-core algorithms has waned.

Due to the very large problem sizes, some out-of-core calculations may take days to complete since
solving a problem that is K times the size of available main memory would increase runtime by a factor
of K3/2. The check-point and restart capability is simplified by having the data on the disk. The sequence
of operations or subroutine calls can be generated and written out [5]. This list of operations allows the
driver to easily determine what needs to be restored or partial results that needs to be recomputed at restart.
Out-of-core techniques for dense matrix factorization can be adapted for other memory hierarchies such as
between CPU and NVRAM, or between CPU and accelerators. Thus out-of-core ideas are well matched to
reducing costly data movement and in exploiting NVRAM technology for exascale computing.

A parallel external memory solver for dense complex matrices that uses two-dimensional block cyclic
data distribution to be compatible with ScaLAPACK PxGETRF has been developed to take advantage of
GPU acceleration and can solve problems larger than available device memory. The solver is used in the
AORSA (All Orders Spectral Algorithm) fusion application [12, 13]. A mixed precision version of the
solver with iterative refinement achieves about four times speedup over using only the 16 multi-core CPUs
on each node. Table 1 shows the performance of AORSA on the Titandev development system using Fermi
GPU processors. Out-of-core techniques for parallel Cholesky factorization with GPU acceleration that is
compatible with ScaLAPACK PxPOTRF has also been developed for computing the view factor matrix in
modeling radiation heat transfer [22] on the Keeneland GPU cluster [20]. External memory algorithms can
also be applied to solving eigenvalue problems by first using block orthogonal similarity transformations to
reduce an out-of-core symmetric matrix to narrow block tridiagonal or banded form that can fit entirely in
fast memory [8]. A divide-and-conqueror algorithm [7, 3] can then be used.

matrix size titandev nodes Gflops/node Total Tflops
395,523 153 376 57.6
395,523 253 326 82.4
789,507 561 352 197.7
789,507 903 285 257.5

Table 1: Performance of parallel mixed precision complex GPU solver on Titandev (Fermi GPU), 8 MPI
tasks per node.
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